8,250 research outputs found

    Theoretical Zero Age Main Sequences revisited

    Full text link
    Zero Age Main Sequence (ZAMS) models with updated physical inputs are presented for selected assumptions about the chemical composition, covering the ranges 0.6 < M/Mo < 1.2, 0.0001 < Z < 0.04, 0.23 < Y < 0.34.The HR diagram location of the ZAMS as a function of Y and Z is discussed both in the theoretical and in the observational HR diagrams, showing that the V magnitude presents an increased dependence on Z to be taken into account when discussing observational evidences. Analytical relations quantifying both these dependences are derived. Implications for the galactic helium to heavier elements enrichment are finally discussed.Comment: 4 pages, 4 postscript figures, accepted for publication on Astronomy & Astrophysic

    The intermediate age open cluster NGC 2660

    Full text link
    We present CCD UBVI photometry of the intermediate old open cluster NGC2660, covering from the red giants region to about seven magnitudes below the main sequence turn-off. Using the synthetic Colour - Magnitude Diagram method, we estimate in a self-consistent way values for distance modulus ((m-M)0 ~= 12.2), reddening (E(B-V) ~= 0.40), metallicity ([Fe/H] about solar), and age (age ~ 1 Gyr). A 30% population of binary stars turns out to be probably present.Comment: 12 pages, 8 (encapsulated) figures, to be published on MNRA

    Uncertainties on the theoretical predictions for classical Cepheid pulsational quantities

    Full text link
    The expected distribution of Cepheids within the instability strip is affected by several model inputs, reflecting upon the predicted Period-Luminosity relation. On the basis of new and updated sets of evolutionary and pulsational models, we quantitatively evaluated the effects on the theoretical PL relation of current uncertainties on the chemical abundances of Cepheids in the Large Magellanic Cloud and on several physical assumptions adopted in the evolutionary models. We analysed how the different factors influence the evolutionary and pulsational observables and the resulting PL relation. As a result, we found that present uncertainties on the most relevant H and He burning reaction rates do not influence in a relevant way the loop extension in temperature. On the contrary, current uncertainties on the LMC chemical composition significantly affect the loop extension and also reflect in the morphology of the instability strip; however their influence on the predicted pulsational parameters is negligible. We also discussed how overshooting and mass loss influence the ML relation and the pulsational parameters. In summary, the present uncertainties on the physical inputs adopted in the evolutionary codes and in the LMC chemical composition are negligible for the prediction of the main pulsational properties; the inclusion of overshooting in the previous H burning phase and/or of mass loss is expected to significantly change the resulting theoretical pulsational scenario for Cepheids, as well as the calibration of their distance scale. These systematic effects are expected to influence the theoretical Cepheid calibration of the secondary distance indicators and in turn the resulting evaluation of the Hubble constant.Comment: accepted for publication on A&

    The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    Full text link
    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.Comment: 15 pages, 10 figures (11 figure files), submitted to Journal of Instrumentatio

    Rocking ratchets in 2D Josephson networks: collective effects and current reversal

    Full text link
    A detailed numerical study on the directed motion of ac-driven vortices and antivortices in 2D Josephson junction arrays (JJA) with an asymmetric periodic pinning potential is reported. Dc-voltage rectification shows a strong dependence on vortex density as well as an inversion of the vortex flow direction with ac amplitude for a wide range of vortex density around ff=1/2 (ff=Ha2/Φ0Ha^2 / \Phi_0), in good agreement with recent experiments by Shal\'om and Pastoriza [Phys. Rev. Lett. {\bf 94}, 177001 (2005)]. The study of vortex structures, spatial and temporal correlations, and vortex-antivortex pairs formation gives insight into a purely collective mechanism behind the current reversal effect.Comment: 4 pages, 5 figures. Accepted for publication in Phys. Rev. Let

    The Role of Opacities in Stellar Pulsation

    Get PDF
    We examine the role of opacities in stellar pulsation with reference to Cepheids and RR Lyraes, and examine the effect of augmented opacities on the theoretical pulsation light curves in key temperature ranges. The temperature ranges are provided by recent experimental and theoretical work that have suggested that the iron opacities have been considerably underestimated. For Cepheids, we find that the augmented opacities have noticeable effects in certain period ranges (around logP1\log P \approx 1) even though there is a degeneracy with mixing length. We also find significant effects in theoretical models of B-star pulsators.Comment: 6 pages, 3 Figures, Proceeding for the "Workshop on Astrophysical Opacities
    corecore